MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. S35125 Stainless Steel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while S35125 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.7 to 8.0
39
Fatigue Strength, MPa 610 to 710
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
78
Shear Strength, MPa 660 to 810
370
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
540
Tensile Strength: Yield (Proof), MPa 1100 to 1340
230

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 430
1100
Melting Completion (Liquidus), °C 1620
1430
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
12
Thermal Expansion, µm/m-K 9.8
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 40
36
Density, g/cm3 4.8
8.1
Embodied Carbon, kg CO2/kg material 59
6.4
Embodied Energy, MJ/kg 950
89
Embodied Water, L/kg 260
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
170
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
19
Strength to Weight: Bending, points 50 to 57
18
Thermal Diffusivity, mm2/s 3.2
3.1
Thermal Shock Resistance, points 79 to 98
12

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.1
Chromium (Cr), % 2.5 to 3.5
20 to 23
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
36.2 to 45.8
Manganese (Mn), % 0
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0
Residuals, % 0 to 0.4
0