Titanium 15-3-3-3 vs. S35500 Stainless Steel
Titanium 15-3-3-3 belongs to the titanium alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is S35500 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 100 | |
200 |
Elongation at Break, % | 5.7 to 8.0 | |
14 |
Fatigue Strength, MPa | 610 to 710 | |
690 to 730 |
Poisson's Ratio | 0.33 | |
0.28 |
Shear Modulus, GPa | 39 | |
78 |
Shear Strength, MPa | 660 to 810 | |
810 to 910 |
Tensile Strength: Ultimate (UTS), MPa | 1120 to 1390 | |
1330 to 1490 |
Tensile Strength: Yield (Proof), MPa | 1100 to 1340 | |
1200 to 1280 |
Thermal Properties
Latent Heat of Fusion, J/g | 390 | |
280 |
Maximum Temperature: Mechanical, °C | 430 | |
870 |
Melting Completion (Liquidus), °C | 1620 | |
1460 |
Melting Onset (Solidus), °C | 1560 | |
1420 |
Specific Heat Capacity, J/kg-K | 520 | |
470 |
Thermal Conductivity, W/m-K | 8.1 | |
16 |
Thermal Expansion, µm/m-K | 9.8 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.2 | |
2.2 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.3 | |
2.5 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 40 | |
16 |
Density, g/cm3 | 4.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 59 | |
3.5 |
Embodied Energy, MJ/kg | 950 | |
47 |
Embodied Water, L/kg | 260 | |
130 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 78 to 89 | |
180 to 190 |
Stiffness to Weight: Axial, points | 12 | |
14 |
Stiffness to Weight: Bending, points | 32 | |
25 |
Strength to Weight: Axial, points | 64 to 80 | |
47 to 53 |
Strength to Weight: Bending, points | 50 to 57 | |
34 to 37 |
Thermal Diffusivity, mm2/s | 3.2 | |
4.4 |
Thermal Shock Resistance, points | 79 to 98 | |
44 to 49 |
Alloy Composition
Aluminum (Al), % | 2.5 to 3.5 | |
0 |
Carbon (C), % | 0 to 0.050 | |
0.1 to 0.15 |
Chromium (Cr), % | 2.5 to 3.5 | |
15 to 16 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.25 | |
73.2 to 77.7 |
Manganese (Mn), % | 0 | |
0.5 to 1.3 |
Molybdenum (Mo), % | 0 | |
2.5 to 3.2 |
Nickel (Ni), % | 0 | |
4.0 to 5.0 |
Niobium (Nb), % | 0 | |
0.1 to 0.5 |
Nitrogen (N), % | 0 to 0.050 | |
0.070 to 0.13 |
Oxygen (O), % | 0 to 0.13 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.040 |
Silicon (Si), % | 0 | |
0 to 0.5 |
Sulfur (S), % | 0 | |
0 to 0.030 |
Tin (Sn), % | 2.5 to 3.5 | |
0 |
Titanium (Ti), % | 72.6 to 78.5 | |
0 |
Vanadium (V), % | 14 to 16 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |