MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. S64512 Stainless Steel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while S64512 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.7 to 8.0
17
Fatigue Strength, MPa 610 to 710
540
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 660 to 810
700
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
1140
Tensile Strength: Yield (Proof), MPa 1100 to 1340
890

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 430
750
Melting Completion (Liquidus), °C 1620
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
28
Thermal Expansion, µm/m-K 9.8
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 40
10
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 59
3.3
Embodied Energy, MJ/kg 950
47
Embodied Water, L/kg 260
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
180
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 32
25
Strength to Weight: Axial, points 64 to 80
40
Strength to Weight: Bending, points 50 to 57
31
Thermal Diffusivity, mm2/s 3.2
7.5
Thermal Shock Resistance, points 79 to 98
42

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0.080 to 0.15
Chromium (Cr), % 2.5 to 3.5
11 to 12.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
80.6 to 84.7
Manganese (Mn), % 0
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
2.0 to 3.0
Nitrogen (N), % 0 to 0.050
0.010 to 0.050
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0.25 to 0.4
Residuals, % 0 to 0.4
0