MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. AISI 310 Stainless Steel

Titanium 4-4-2 belongs to the titanium alloys classification, while AISI 310 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is AISI 310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10
34 to 45
Fatigue Strength, MPa 590 to 620
240 to 280
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 42
78
Shear Strength, MPa 690 to 750
420 to 470
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
600 to 710
Tensile Strength: Yield (Proof), MPa 1030 to 1080
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 310
1040
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 6.7
15
Thermal Expansion, µm/m-K 8.6
15

Otherwise Unclassified Properties

Base Metal Price, % relative 39
25
Density, g/cm3 4.7
7.8
Embodied Carbon, kg CO2/kg material 30
4.3
Embodied Energy, MJ/kg 480
61
Embodied Water, L/kg 180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
170 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
25
Strength to Weight: Axial, points 68 to 74
21 to 25
Strength to Weight: Bending, points 52 to 55
20 to 22
Thermal Diffusivity, mm2/s 2.6
3.9
Thermal Shock Resistance, points 86 to 93
14 to 17

Alloy Composition

Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.25
Chromium (Cr), % 0
24 to 26
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
48.2 to 57
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 0
19 to 22
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.7
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Residuals, % 0 to 0.4
0