MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. AISI 316Cb Stainless Steel

Titanium 4-4-2 belongs to the titanium alloys classification, while AISI 316Cb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is AISI 316Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10
34
Fatigue Strength, MPa 590 to 620
180
Poisson's Ratio 0.32
0.28
Reduction in Area, % 20
46
Shear Modulus, GPa 42
78
Shear Strength, MPa 690 to 750
390
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
580
Tensile Strength: Yield (Proof), MPa 1030 to 1080
230

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
940
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 6.7
15
Thermal Expansion, µm/m-K 8.6
16

Otherwise Unclassified Properties

Base Metal Price, % relative 39
22
Density, g/cm3 4.7
7.9
Embodied Carbon, kg CO2/kg material 30
4.4
Embodied Energy, MJ/kg 480
61
Embodied Water, L/kg 180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
160
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
25
Strength to Weight: Axial, points 68 to 74
20
Strength to Weight: Bending, points 52 to 55
20
Thermal Diffusivity, mm2/s 2.6
4.1
Thermal Shock Resistance, points 86 to 93
13

Alloy Composition

Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
60.9 to 72
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 3.0 to 5.0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0 to 0.050
0 to 0.1
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.7
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Residuals, % 0 to 0.4
0