MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. EN 1.4449 Stainless Steel

Titanium 4-4-2 belongs to the titanium alloys classification, while EN 1.4449 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is EN 1.4449 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10
48
Fatigue Strength, MPa 590 to 620
240
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 690 to 750
440
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
620
Tensile Strength: Yield (Proof), MPa 1030 to 1080
250

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
960
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 6.7
15
Thermal Expansion, µm/m-K 8.6
16

Otherwise Unclassified Properties

Base Metal Price, % relative 39
19
Density, g/cm3 4.7
7.9
Embodied Carbon, kg CO2/kg material 30
3.9
Embodied Energy, MJ/kg 480
54
Embodied Water, L/kg 180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
240
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
25
Strength to Weight: Axial, points 68 to 74
22
Strength to Weight: Bending, points 52 to 55
20
Thermal Diffusivity, mm2/s 2.6
4.0
Thermal Shock Resistance, points 86 to 93
14

Alloy Composition

Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.035
Chromium (Cr), % 0
17 to 18.2
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
62.4 to 69.3
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 3.0 to 5.0
2.3 to 2.8
Nickel (Ni), % 0
11.5 to 12.5
Nitrogen (N), % 0 to 0.050
0 to 0.080
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Residuals, % 0 to 0.4
0