MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. C86200 Bronze

Titanium 4-4-2 belongs to the titanium alloys classification, while C86200 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 10
21
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
710
Tensile Strength: Yield (Proof), MPa 1030 to 1080
350

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 310
160
Melting Completion (Liquidus), °C 1610
940
Melting Onset (Solidus), °C 1560
900
Specific Heat Capacity, J/kg-K 540
410
Thermal Conductivity, W/m-K 6.7
35
Thermal Expansion, µm/m-K 8.6
20

Otherwise Unclassified Properties

Base Metal Price, % relative 39
23
Density, g/cm3 4.7
8.0
Embodied Carbon, kg CO2/kg material 30
2.9
Embodied Energy, MJ/kg 480
49
Embodied Water, L/kg 180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
540
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 34
20
Strength to Weight: Axial, points 68 to 74
25
Strength to Weight: Bending, points 52 to 55
22
Thermal Diffusivity, mm2/s 2.6
11
Thermal Shock Resistance, points 86 to 93
23

Alloy Composition

Aluminum (Al), % 3.0 to 5.0
3.0 to 4.9
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
60 to 66
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0
2.5 to 5.0
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.3 to 0.7
0
Tin (Sn), % 1.5 to 2.5
0 to 0.2
Titanium (Ti), % 85.8 to 92.2
0
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0