MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. N08020 Stainless Steel

Titanium 4-4-2 belongs to the titanium alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10
15 to 34
Fatigue Strength, MPa 590 to 620
210 to 240
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 690 to 750
380 to 410
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
610 to 620
Tensile Strength: Yield (Proof), MPa 1030 to 1080
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1610
1410
Melting Onset (Solidus), °C 1560
1360
Specific Heat Capacity, J/kg-K 540
460
Thermal Conductivity, W/m-K 6.7
12
Thermal Expansion, µm/m-K 8.6
15

Otherwise Unclassified Properties

Base Metal Price, % relative 39
38
Density, g/cm3 4.7
8.2
Embodied Carbon, kg CO2/kg material 30
6.6
Embodied Energy, MJ/kg 480
92
Embodied Water, L/kg 180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
180 to 440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 68 to 74
21
Strength to Weight: Bending, points 52 to 55
20
Thermal Diffusivity, mm2/s 2.6
3.2
Thermal Shock Resistance, points 86 to 93
15

Alloy Composition

Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
29.9 to 44
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 3.0 to 5.0
2.0 to 3.0
Nickel (Ni), % 0
32 to 38
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Residuals, % 0 to 0.4
0

Comparable Variants