MakeItFrom.com
Menu (ESC)

Titanium 6-2-4-2 vs. ASTM A203 Steel

Titanium 6-2-4-2 belongs to the titanium alloys classification, while ASTM A203 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 6-2-4-2 and the bottom bar is ASTM A203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6
22 to 26
Fatigue Strength, MPa 490
210 to 280
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 560
330 to 370
Tensile Strength: Ultimate (UTS), MPa 950
520 to 590
Tensile Strength: Yield (Proof), MPa 880
290 to 390

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 300
410
Melting Completion (Liquidus), °C 1590
1460
Melting Onset (Solidus), °C 1540
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 6.9
52
Thermal Expansion, µm/m-K 9.5
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 0.9
7.4 to 7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
8.5 to 8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 42
3.2 to 4.0
Density, g/cm3 4.6
7.9
Embodied Carbon, kg CO2/kg material 32
1.6 to 1.7
Embodied Energy, MJ/kg 520
21 to 23
Embodied Water, L/kg 210
50 to 52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 3640
230 to 410
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 57
18 to 21
Strength to Weight: Bending, points 46
18 to 20
Thermal Diffusivity, mm2/s 2.8
14
Thermal Shock Resistance, points 67
15 to 17