MakeItFrom.com
Menu (ESC)

Titanium 6-2-4-2 vs. CC491K Bronze

Titanium 6-2-4-2 belongs to the titanium alloys classification, while CC491K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-2-4-2 and the bottom bar is CC491K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 8.6
13
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 950
260
Tensile Strength: Yield (Proof), MPa 880
120

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 300
160
Melting Completion (Liquidus), °C 1590
980
Melting Onset (Solidus), °C 1540
900
Specific Heat Capacity, J/kg-K 540
370
Thermal Conductivity, W/m-K 6.9
71
Thermal Expansion, µm/m-K 9.5
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 0.9
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
15

Otherwise Unclassified Properties

Base Metal Price, % relative 42
31
Density, g/cm3 4.6
8.9
Embodied Carbon, kg CO2/kg material 32
3.1
Embodied Energy, MJ/kg 520
51
Embodied Water, L/kg 210
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
27
Resilience: Unit (Modulus of Resilience), kJ/m3 3640
67
Stiffness to Weight: Axial, points 13
6.7
Stiffness to Weight: Bending, points 34
18
Strength to Weight: Axial, points 57
8.1
Strength to Weight: Bending, points 46
10
Thermal Diffusivity, mm2/s 2.8
22
Thermal Shock Resistance, points 67
9.3

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0
81 to 87
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Molybdenum (Mo), % 1.8 to 2.2
0
Nickel (Ni), % 0
0 to 2.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0.060 to 0.12
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 1.8 to 2.2
4.0 to 6.0
Titanium (Ti), % 83.7 to 87.2
0
Zinc (Zn), % 0
4.0 to 6.0
Zirconium (Zr), % 3.6 to 4.4
0
Residuals, % 0 to 0.4
0