MakeItFrom.com
Menu (ESC)

Titanium 6-2-4-2 vs. Grade 32 Titanium

Both titanium 6-2-4-2 and grade 32 titanium are titanium alloys. Both are furnished in the annealed condition. They have a moderately high 94% of their average alloy composition in common.

For each property being compared, the top bar is titanium 6-2-4-2 and the bottom bar is grade 32 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 8.6
11
Fatigue Strength, MPa 490
390
Poisson's Ratio 0.32
0.32
Reduction in Area, % 21
28
Shear Modulus, GPa 40
40
Shear Strength, MPa 560
460
Tensile Strength: Ultimate (UTS), MPa 950
770
Tensile Strength: Yield (Proof), MPa 880
670

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 300
310
Melting Completion (Liquidus), °C 1590
1610
Melting Onset (Solidus), °C 1540
1560
Specific Heat Capacity, J/kg-K 540
550
Thermal Conductivity, W/m-K 6.9
7.5
Thermal Expansion, µm/m-K 9.5
8.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 0.9
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 42
38
Density, g/cm3 4.6
4.5
Embodied Carbon, kg CO2/kg material 32
32
Embodied Energy, MJ/kg 520
530
Embodied Water, L/kg 210
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
83
Resilience: Unit (Modulus of Resilience), kJ/m3 3640
2100
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
35
Strength to Weight: Axial, points 57
47
Strength to Weight: Bending, points 46
41
Thermal Diffusivity, mm2/s 2.8
3.0
Thermal Shock Resistance, points 67
63

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
4.5 to 5.5
Carbon (C), % 0 to 0.050
0 to 0.080
Hydrogen (H), % 0 to 0.015
0 to 0.015
Iron (Fe), % 0 to 0.25
0 to 0.25
Molybdenum (Mo), % 1.8 to 2.2
0.6 to 1.2
Nitrogen (N), % 0 to 0.050
0 to 0.030
Oxygen (O), % 0 to 0.15
0 to 0.11
Silicon (Si), % 0.060 to 0.12
0.060 to 0.14
Tin (Sn), % 1.8 to 2.2
0.6 to 1.4
Titanium (Ti), % 83.7 to 87.2
88.1 to 93
Vanadium (V), % 0
0.6 to 1.4
Zirconium (Zr), % 3.6 to 4.4
0.6 to 1.4
Residuals, % 0
0 to 0.4