MakeItFrom.com
Menu (ESC)

Titanium 6-2-4-2 vs. Type 4 Magnetic Alloy

Titanium 6-2-4-2 belongs to the titanium alloys classification, while Type 4 magnetic alloy belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-2-4-2 and the bottom bar is Type 4 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6
2.0 to 40
Fatigue Strength, MPa 490
220 to 400
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
73
Shear Strength, MPa 560
420 to 630
Tensile Strength: Ultimate (UTS), MPa 950
620 to 1100
Tensile Strength: Yield (Proof), MPa 880
270 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 300
900
Melting Completion (Liquidus), °C 1590
1420
Melting Onset (Solidus), °C 1540
1370
Specific Heat Capacity, J/kg-K 540
440
Thermal Expansion, µm/m-K 9.5
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 0.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 42
60
Density, g/cm3 4.6
8.8
Embodied Carbon, kg CO2/kg material 32
10
Embodied Energy, MJ/kg 520
140
Embodied Water, L/kg 210
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
22 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 3640
190 to 2840
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 34
22
Strength to Weight: Axial, points 57
19 to 35
Strength to Weight: Bending, points 46
18 to 27
Thermal Shock Resistance, points 67
21 to 37

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.050
0 to 0.050
Chromium (Cr), % 0
0 to 0.3
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
9.5 to 17.5
Manganese (Mn), % 0
0 to 0.8
Molybdenum (Mo), % 1.8 to 2.2
3.5 to 6.0
Nickel (Ni), % 0
79 to 82
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.060 to 0.12
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 1.8 to 2.2
0
Titanium (Ti), % 83.7 to 87.2
0
Zirconium (Zr), % 3.6 to 4.4
0
Residuals, % 0 to 0.4
0