MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. ACI-ASTM CD3MCuN Steel

Titanium 6-5-0.5 belongs to the titanium alloys classification, while ACI-ASTM CD3MCuN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is ACI-ASTM CD3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 6.7
29
Fatigue Strength, MPa 530
370
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 1080
790
Tensile Strength: Yield (Proof), MPa 990
500

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 300
1100
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1390
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 4.2
15
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 41
20
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
3.9
Embodied Energy, MJ/kg 540
54
Embodied Water, L/kg 180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
200
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
620
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 67
28
Strength to Weight: Bending, points 52
24
Thermal Diffusivity, mm2/s 1.7
4.1
Thermal Shock Resistance, points 79
22

Alloy Composition

Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
24 to 26.7
Copper (Cu), % 0
1.4 to 1.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
58.2 to 65.9
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0.25 to 0.75
2.9 to 3.8
Nickel (Ni), % 0
5.6 to 6.7
Nitrogen (N), % 0 to 0.050
0.22 to 0.33
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.1
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0