MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. C16500 Copper

Titanium 6-5-0.5 belongs to the titanium alloys classification, while C16500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is C16500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 6.7
1.5 to 53
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 630
200 to 310
Tensile Strength: Ultimate (UTS), MPa 1080
280 to 530
Tensile Strength: Yield (Proof), MPa 990
97 to 520

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 300
340
Melting Completion (Liquidus), °C 1610
1070
Melting Onset (Solidus), °C 1560
1010
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 4.2
250
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
61

Otherwise Unclassified Properties

Base Metal Price, % relative 41
31
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 33
2.6
Embodied Energy, MJ/kg 540
42
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
7.8 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
41 to 1160
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 67
8.6 to 17
Strength to Weight: Bending, points 52
11 to 16
Thermal Diffusivity, mm2/s 1.7
74
Thermal Shock Resistance, points 79
9.8 to 19

Alloy Composition

Aluminum (Al), % 5.7 to 6.3
0
Cadmium (Cd), % 0
0.6 to 1.0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
97.8 to 98.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.020
Molybdenum (Mo), % 0.25 to 0.75
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.19
0
Silicon (Si), % 0 to 0.4
0
Tin (Sn), % 0
0.5 to 0.7
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0
0 to 0.5