MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. S20433 Stainless Steel

Titanium 6-5-0.5 belongs to the titanium alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 6.7
46
Fatigue Strength, MPa 530
250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 630
440
Tensile Strength: Ultimate (UTS), MPa 1080
630
Tensile Strength: Yield (Proof), MPa 990
270

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 300
900
Melting Completion (Liquidus), °C 1610
1400
Melting Onset (Solidus), °C 1560
1360
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 4.2
15
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 41
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 540
39
Embodied Water, L/kg 180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
230
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 67
23
Strength to Weight: Bending, points 52
21
Thermal Diffusivity, mm2/s 1.7
4.0
Thermal Shock Resistance, points 79
14

Alloy Composition

Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
64.1 to 72.4
Manganese (Mn), % 0
5.5 to 7.5
Molybdenum (Mo), % 0.25 to 0.75
0
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0 to 0.050
0.1 to 0.25
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0