MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. S32654 Stainless Steel

Titanium 6-5-0.5 belongs to the titanium alloys classification, while S32654 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 6.7
45
Fatigue Strength, MPa 530
450
Poisson's Ratio 0.32
0.28
Reduction in Area, % 23
46
Shear Modulus, GPa 40
82
Shear Strength, MPa 630
590
Tensile Strength: Ultimate (UTS), MPa 1080
850
Tensile Strength: Yield (Proof), MPa 990
490

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 300
1100
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 550
460
Thermal Conductivity, W/m-K 4.2
11
Thermal Expansion, µm/m-K 9.4
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 41
34
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 33
6.4
Embodied Energy, MJ/kg 540
87
Embodied Water, L/kg 180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
330
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 67
29
Strength to Weight: Bending, points 52
25
Thermal Diffusivity, mm2/s 1.7
2.9
Thermal Shock Resistance, points 79
19

Alloy Composition

Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
24 to 25
Copper (Cu), % 0
0.3 to 0.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
38.3 to 45.3
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0.25 to 0.75
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0 to 0.050
0.45 to 0.55
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0