MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. 1200 Aluminum

Titanium 6-6-2 belongs to the titanium alloys classification, while 1200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 6.7 to 9.0
1.1 to 28
Fatigue Strength, MPa 590 to 670
25 to 69
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 670 to 800
54 to 100
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
85 to 180
Tensile Strength: Yield (Proof), MPa 1040 to 1230
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1610
660
Melting Onset (Solidus), °C 1560
650
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 5.5
230
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
58
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
190

Otherwise Unclassified Properties

Base Metal Price, % relative 40
9.0
Density, g/cm3 4.8
2.7
Embodied Carbon, kg CO2/kg material 29
8.2
Embodied Energy, MJ/kg 470
150
Embodied Water, L/kg 200
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
2.0 to 19
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
50
Strength to Weight: Axial, points 66 to 79
8.7 to 19
Strength to Weight: Bending, points 50 to 57
16 to 26
Thermal Diffusivity, mm2/s 2.1
92
Thermal Shock Resistance, points 75 to 90
3.8 to 8.1

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
99 to 100
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0.35 to 1.0
0 to 0.050
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0 to 1.0
Manganese (Mn), % 0
0 to 0.050
Molybdenum (Mo), % 5.0 to 6.0
0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 1.0
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants