MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. 319.0 Aluminum

Titanium 6-6-2 belongs to the titanium alloys classification, while 319.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is 319.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
72
Elongation at Break, % 6.7 to 9.0
1.8 to 2.0
Fatigue Strength, MPa 590 to 670
76 to 80
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 44
27
Shear Strength, MPa 670 to 800
170 to 210
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
190 to 240
Tensile Strength: Yield (Proof), MPa 1040 to 1230
110 to 180

Thermal Properties

Latent Heat of Fusion, J/g 400
480
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1610
600
Melting Onset (Solidus), °C 1560
540
Specific Heat Capacity, J/kg-K 540
880
Thermal Conductivity, W/m-K 5.5
110
Thermal Expansion, µm/m-K 9.4
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
84

Otherwise Unclassified Properties

Base Metal Price, % relative 40
10
Density, g/cm3 4.8
2.9
Embodied Carbon, kg CO2/kg material 29
7.7
Embodied Energy, MJ/kg 470
140
Embodied Water, L/kg 200
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
3.3 to 3.9
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
48
Strength to Weight: Axial, points 66 to 79
18 to 24
Strength to Weight: Bending, points 50 to 57
25 to 30
Thermal Diffusivity, mm2/s 2.1
44
Thermal Shock Resistance, points 75 to 90
8.6 to 11

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
85.8 to 91.5
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0.35 to 1.0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 0
0 to 0.35
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
5.5 to 6.5
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5