MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. A535.0 Aluminum

Titanium 6-6-2 belongs to the titanium alloys classification, while A535.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
67
Elongation at Break, % 6.7 to 9.0
9.0
Fatigue Strength, MPa 590 to 670
95
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 44
25
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
250
Tensile Strength: Yield (Proof), MPa 1040 to 1230
120

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1610
620
Melting Onset (Solidus), °C 1560
550
Specific Heat Capacity, J/kg-K 540
910
Thermal Conductivity, W/m-K 5.5
100
Thermal Expansion, µm/m-K 9.4
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
79

Otherwise Unclassified Properties

Base Metal Price, % relative 40
9.5
Density, g/cm3 4.8
2.6
Embodied Carbon, kg CO2/kg material 29
9.3
Embodied Energy, MJ/kg 470
160
Embodied Water, L/kg 200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
19
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
51
Strength to Weight: Axial, points 66 to 79
26
Strength to Weight: Bending, points 50 to 57
33
Thermal Diffusivity, mm2/s 2.1
42
Thermal Shock Resistance, points 75 to 90
11

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
91.4 to 93.4
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0.35 to 1.0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0 to 0.2
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0
0.1 to 0.25
Molybdenum (Mo), % 5.0 to 6.0
0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0 to 0.25
Residuals, % 0
0 to 0.15