MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. ASTM A182 Grade F6b

Titanium 6-6-2 belongs to the titanium alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.7 to 9.0
18
Fatigue Strength, MPa 590 to 670
440
Poisson's Ratio 0.32
0.28
Reduction in Area, % 17 to 23
51
Shear Modulus, GPa 44
76
Shear Strength, MPa 670 to 800
530
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
850
Tensile Strength: Yield (Proof), MPa 1040 to 1230
710

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 310
750
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 5.5
25
Thermal Expansion, µm/m-K 9.4
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 40
8.0
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 29
2.2
Embodied Energy, MJ/kg 470
30
Embodied Water, L/kg 200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
25
Strength to Weight: Axial, points 66 to 79
30
Strength to Weight: Bending, points 50 to 57
26
Thermal Diffusivity, mm2/s 2.1
6.7
Thermal Shock Resistance, points 75 to 90
31

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
0
Carbon (C), % 0 to 0.050
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 0.35 to 1.0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
81.2 to 87.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 5.0 to 6.0
0.4 to 0.6
Nickel (Ni), % 0
1.0 to 2.0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0
Residuals, % 0 to 0.4
0