MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. EN 1.1191 Steel

Titanium 6-6-2 belongs to the titanium alloys classification, while EN 1.1191 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is EN 1.1191 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.7 to 9.0
16 to 17
Fatigue Strength, MPa 590 to 670
210 to 290
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 44
72
Shear Strength, MPa 670 to 800
380 to 430
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
630 to 700
Tensile Strength: Yield (Proof), MPa 1040 to 1230
310 to 440

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 5.5
48
Thermal Expansion, µm/m-K 9.4
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 40
2.1
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 29
1.4
Embodied Energy, MJ/kg 470
19
Embodied Water, L/kg 200
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
83 to 100
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 66 to 79
22 to 25
Strength to Weight: Bending, points 50 to 57
21 to 22
Thermal Diffusivity, mm2/s 2.1
13
Thermal Shock Resistance, points 75 to 90
20 to 22

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
0
Carbon (C), % 0 to 0.050
0.42 to 0.5
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0.35 to 1.0
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
97.3 to 99.08
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 5.0 to 6.0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0
Residuals, % 0 to 0.4
0