MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. EN 1.4057 Stainless Steel

Titanium 6-6-2 belongs to the titanium alloys classification, while EN 1.4057 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is EN 1.4057 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.7 to 9.0
11 to 17
Fatigue Strength, MPa 590 to 670
320 to 430
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 670 to 800
520 to 580
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
840 to 980
Tensile Strength: Yield (Proof), MPa 1040 to 1230
530 to 790

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 310
850
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 5.5
25
Thermal Expansion, µm/m-K 9.4
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 40
9.5
Density, g/cm3 4.8
7.7
Embodied Carbon, kg CO2/kg material 29
2.2
Embodied Energy, MJ/kg 470
32
Embodied Water, L/kg 200
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
96 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
25
Strength to Weight: Axial, points 66 to 79
30 to 35
Strength to Weight: Bending, points 50 to 57
26 to 28
Thermal Diffusivity, mm2/s 2.1
6.7
Thermal Shock Resistance, points 75 to 90
30 to 35

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
0
Carbon (C), % 0 to 0.050
0.12 to 0.22
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0.35 to 1.0
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
77.7 to 83.4
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 0
1.5 to 2.5
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0
Residuals, % 0 to 0.4
0

Comparable Variants