MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. EN 1.4477 Stainless Steel

Titanium 6-6-2 belongs to the titanium alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 6.7 to 9.0
22 to 23
Fatigue Strength, MPa 590 to 670
420 to 490
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 44
81
Shear Strength, MPa 670 to 800
550 to 580
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
880 to 930
Tensile Strength: Yield (Proof), MPa 1040 to 1230
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 5.5
13
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 40
20
Density, g/cm3 4.8
7.7
Embodied Carbon, kg CO2/kg material 29
3.7
Embodied Energy, MJ/kg 470
52
Embodied Water, L/kg 200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
180 to 190
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 34
25
Strength to Weight: Axial, points 66 to 79
31 to 33
Strength to Weight: Bending, points 50 to 57
26 to 27
Thermal Diffusivity, mm2/s 2.1
3.5
Thermal Shock Resistance, points 75 to 90
23 to 25

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
0
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0.35 to 1.0
0 to 0.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
56.6 to 63.6
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 5.0 to 6.0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0 to 0.040
0.3 to 0.4
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0
Residuals, % 0 to 0.4
0