Titanium 6-6-2 vs. Grade 29 Titanium
Both titanium 6-6-2 and grade 29 titanium are titanium alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is grade 29 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 120 | |
110 |
Elongation at Break, % | 6.7 to 9.0 | |
6.8 to 11 |
Fatigue Strength, MPa | 590 to 670 | |
460 to 510 |
Poisson's Ratio | 0.32 | |
0.32 |
Reduction in Area, % | 17 to 23 | |
17 |
Shear Modulus, GPa | 44 | |
40 |
Shear Strength, MPa | 670 to 800 | |
550 to 560 |
Tensile Strength: Ultimate (UTS), MPa | 1140 to 1370 | |
930 to 940 |
Tensile Strength: Yield (Proof), MPa | 1040 to 1230 | |
850 to 870 |
Thermal Properties
Latent Heat of Fusion, J/g | 400 | |
410 |
Maximum Temperature: Mechanical, °C | 310 | |
340 |
Melting Completion (Liquidus), °C | 1610 | |
1610 |
Melting Onset (Solidus), °C | 1560 | |
1560 |
Specific Heat Capacity, J/kg-K | 540 | |
560 |
Thermal Conductivity, W/m-K | 5.5 | |
7.3 |
Thermal Expansion, µm/m-K | 9.4 | |
9.3 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.1 | |
1.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.1 | |
2.0 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 40 | |
36 |
Density, g/cm3 | 4.8 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 29 | |
39 |
Embodied Energy, MJ/kg | 470 | |
640 |
Embodied Water, L/kg | 200 | |
410 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 89 to 99 | |
62 to 100 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 34 | |
35 |
Strength to Weight: Axial, points | 66 to 79 | |
58 to 59 |
Strength to Weight: Bending, points | 50 to 57 | |
47 to 48 |
Thermal Diffusivity, mm2/s | 2.1 | |
2.9 |
Thermal Shock Resistance, points | 75 to 90 | |
68 to 69 |
Alloy Composition
Aluminum (Al), % | 5.0 to 6.0 | |
5.5 to 6.5 |
Carbon (C), % | 0 to 0.050 | |
0 to 0.080 |
Copper (Cu), % | 0.35 to 1.0 | |
0 |
Hydrogen (H), % | 0 to 0.015 | |
0 to 0.015 |
Iron (Fe), % | 0.35 to 1.0 | |
0 to 0.25 |
Molybdenum (Mo), % | 5.0 to 6.0 | |
0 |
Nitrogen (N), % | 0 to 0.040 | |
0 to 0.030 |
Oxygen (O), % | 0 to 0.2 | |
0 to 0.13 |
Ruthenium (Ru), % | 0 | |
0.080 to 0.14 |
Tin (Sn), % | 1.5 to 2.5 | |
0 |
Titanium (Ti), % | 82.8 to 87.8 | |
88 to 90.9 |
Vanadium (V), % | 0 | |
3.5 to 4.5 |
Residuals, % | 0 | |
0 to 0.4 |