MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. Sintered 2014 Aluminum

Titanium 6-6-2 belongs to the titanium alloys classification, while sintered 2014 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 6.7 to 9.0
0.5 to 3.0
Fatigue Strength, MPa 590 to 670
52 to 100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 44
26
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
140 to 290
Tensile Strength: Yield (Proof), MPa 1040 to 1230
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1560
560
Specific Heat Capacity, J/kg-K 540
880
Thermal Conductivity, W/m-K 5.5
130
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
100

Otherwise Unclassified Properties

Base Metal Price, % relative 40
10
Density, g/cm3 4.8
2.9
Embodied Carbon, kg CO2/kg material 29
8.0
Embodied Energy, MJ/kg 470
150
Embodied Water, L/kg 200
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
1.0 to 5.7
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
47
Strength to Weight: Axial, points 66 to 79
13 to 27
Strength to Weight: Bending, points 50 to 57
20 to 33
Thermal Diffusivity, mm2/s 2.1
51
Thermal Shock Resistance, points 75 to 90
6.2 to 13

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
91.5 to 96.3
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0.35 to 1.0
3.5 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0
Magnesium (Mg), % 0
0.2 to 0.8
Molybdenum (Mo), % 5.0 to 6.0
0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 1.2
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0
Residuals, % 0
0 to 1.5