MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. C16200 Copper

Titanium 6-6-2 belongs to the titanium alloys classification, while C16200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 6.7 to 9.0
2.0 to 56
Fatigue Strength, MPa 590 to 670
100 to 210
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 44
43
Shear Strength, MPa 670 to 800
190 to 390
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
240 to 550
Tensile Strength: Yield (Proof), MPa 1040 to 1230
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 310
370
Melting Completion (Liquidus), °C 1610
1080
Melting Onset (Solidus), °C 1560
1030
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 5.5
360
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
90
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
90

Otherwise Unclassified Properties

Base Metal Price, % relative 40
30
Density, g/cm3 4.8
9.0
Embodied Carbon, kg CO2/kg material 29
2.6
Embodied Energy, MJ/kg 470
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
10 to 99
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 34
18
Strength to Weight: Axial, points 66 to 79
7.4 to 17
Strength to Weight: Bending, points 50 to 57
9.6 to 17
Thermal Diffusivity, mm2/s 2.1
100
Thermal Shock Resistance, points 75 to 90
8.7 to 20

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
0
Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0.35 to 1.0
98.6 to 99.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0 to 0.2
Molybdenum (Mo), % 5.0 to 6.0
0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0
Residuals, % 0 to 0.4
0