MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. S36200 Stainless Steel

Titanium 6-6-2 belongs to the titanium alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.7 to 9.0
3.4 to 4.6
Fatigue Strength, MPa 590 to 670
450 to 570
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 670 to 800
680 to 810
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
1180 to 1410
Tensile Strength: Yield (Proof), MPa 1040 to 1230
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 310
820
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 5.5
16
Thermal Expansion, µm/m-K 9.4
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 40
12
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 29
2.8
Embodied Energy, MJ/kg 470
40
Embodied Water, L/kg 200
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
46 to 51
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
25
Strength to Weight: Axial, points 66 to 79
42 to 50
Strength to Weight: Bending, points 50 to 57
32 to 36
Thermal Diffusivity, mm2/s 2.1
4.3
Thermal Shock Resistance, points 75 to 90
40 to 48

Alloy Composition

Aluminum (Al), % 5.0 to 6.0
0 to 0.1
Carbon (C), % 0 to 0.050
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 0.35 to 1.0
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
75.4 to 79.5
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 5.0 to 6.0
0 to 0.3
Nickel (Ni), % 0
6.5 to 7.0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0.6 to 0.9
Residuals, % 0 to 0.4
0

Comparable Variants