MakeItFrom.com
Menu (ESC)

Titanium 6-7 vs. 5010 Aluminum

Titanium 6-7 belongs to the titanium alloys classification, while 5010 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is titanium 6-7 and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 11
1.1 to 23
Fatigue Strength, MPa 530
35 to 83
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 45
26
Shear Strength, MPa 610
64 to 120
Tensile Strength: Ultimate (UTS), MPa 1020
100 to 210
Tensile Strength: Yield (Proof), MPa 900
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 300
180
Melting Completion (Liquidus), °C 1700
650
Melting Onset (Solidus), °C 1650
630
Specific Heat Capacity, J/kg-K 520
900
Thermal Expansion, µm/m-K 9.3
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 5.1
2.7
Embodied Carbon, kg CO2/kg material 34
8.2
Embodied Energy, MJ/kg 540
150
Embodied Water, L/kg 190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 3460
10 to 270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 32
50
Strength to Weight: Axial, points 56
10 to 22
Strength to Weight: Bending, points 44
18 to 29
Thermal Shock Resistance, points 66
4.5 to 9.4

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
97.1 to 99.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.0090
0
Iron (Fe), % 0 to 0.25
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0
0.1 to 0.3
Molybdenum (Mo), % 6.5 to 7.5
0
Niobium (Nb), % 6.5 to 7.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.4
Tantalum (Ta), % 0 to 0.5
0
Titanium (Ti), % 84.9 to 88
0 to 0.1
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15