MakeItFrom.com
Menu (ESC)

Titanium 6-7 vs. 6063A Aluminum

Titanium 6-7 belongs to the titanium alloys classification, while 6063A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 6-7 and the bottom bar is 6063A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 11
6.7 to 18
Fatigue Strength, MPa 530
53 to 80
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 45
26
Shear Strength, MPa 610
78 to 150
Tensile Strength: Ultimate (UTS), MPa 1020
130 to 260
Tensile Strength: Yield (Proof), MPa 900
55 to 200

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 300
160
Melting Completion (Liquidus), °C 1700
640
Melting Onset (Solidus), °C 1650
620
Specific Heat Capacity, J/kg-K 520
900
Thermal Expansion, µm/m-K 9.3
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 5.1
2.7
Embodied Carbon, kg CO2/kg material 34
8.3
Embodied Energy, MJ/kg 540
150
Embodied Water, L/kg 190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
13 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 3460
22 to 280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 32
50
Strength to Weight: Axial, points 56
13 to 26
Strength to Weight: Bending, points 44
21 to 33
Thermal Shock Resistance, points 66
5.6 to 11

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
97.5 to 99
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.0090
0
Iron (Fe), % 0 to 0.25
0.15 to 0.35
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0
0 to 0.15
Molybdenum (Mo), % 6.5 to 7.5
0
Niobium (Nb), % 6.5 to 7.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0.3 to 0.6
Tantalum (Ta), % 0 to 0.5
0
Titanium (Ti), % 84.9 to 88
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15