MakeItFrom.com
Menu (ESC)

Titanium 6-7 vs. AWS ER80S-B3L

Titanium 6-7 belongs to the titanium alloys classification, while AWS ER80S-B3L belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is titanium 6-7 and the bottom bar is AWS ER80S-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
74
Tensile Strength: Ultimate (UTS), MPa 1020
630
Tensile Strength: Yield (Proof), MPa 900
530

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Melting Completion (Liquidus), °C 1700
1460
Melting Onset (Solidus), °C 1650
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Expansion, µm/m-K 9.3
13

Otherwise Unclassified Properties

Base Metal Price, % relative 75
4.1
Density, g/cm3 5.1
7.8
Embodied Carbon, kg CO2/kg material 34
1.8
Embodied Energy, MJ/kg 540
23
Embodied Water, L/kg 190
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3460
730
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 56
22
Strength to Weight: Bending, points 44
21
Thermal Shock Resistance, points 66
18

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
2.3 to 2.7
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.0090
0
Iron (Fe), % 0 to 0.25
93.6 to 96
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 6.5 to 7.5
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.2
Niobium (Nb), % 6.5 to 7.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.4 to 0.7
Sulfur (S), % 0
0 to 0.025
Tantalum (Ta), % 0 to 0.5
0
Titanium (Ti), % 84.9 to 88
0
Residuals, % 0
0 to 0.5