MakeItFrom.com
Menu (ESC)

Titanium 6-7 vs. C11300 Copper

Titanium 6-7 belongs to the titanium alloys classification, while C11300 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is titanium 6-7 and the bottom bar is C11300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 11
2.3 to 50
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
43
Shear Strength, MPa 610
160 to 240
Tensile Strength: Ultimate (UTS), MPa 1020
230 to 410
Tensile Strength: Yield (Proof), MPa 900
77 to 400

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 300
200
Melting Completion (Liquidus), °C 1700
1080
Melting Onset (Solidus), °C 1650
1030
Specific Heat Capacity, J/kg-K 520
390
Thermal Expansion, µm/m-K 9.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 75
32
Density, g/cm3 5.1
9.0
Embodied Carbon, kg CO2/kg material 34
2.6
Embodied Energy, MJ/kg 540
42
Embodied Water, L/kg 190
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
8.5 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 3460
25 to 690
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 32
18
Strength to Weight: Axial, points 56
7.2 to 13
Strength to Weight: Bending, points 44
9.4 to 14
Thermal Shock Resistance, points 66
8.2 to 15

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.85 to 99.973
Hydrogen (H), % 0 to 0.0090
0
Iron (Fe), % 0 to 0.25
0
Molybdenum (Mo), % 6.5 to 7.5
0
Niobium (Nb), % 6.5 to 7.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silver (Ag), % 0
0.027 to 0.050
Tantalum (Ta), % 0 to 0.5
0
Titanium (Ti), % 84.9 to 88
0
Residuals, % 0
0 to 0.1