MakeItFrom.com
Menu (ESC)

Titanium 6-7 vs. C14200 Copper

Titanium 6-7 belongs to the titanium alloys classification, while C14200 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is titanium 6-7 and the bottom bar is C14200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 11
8.0 to 45
Fatigue Strength, MPa 530
76 to 130
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
43
Shear Strength, MPa 610
150 to 200
Tensile Strength: Ultimate (UTS), MPa 1020
220 to 370
Tensile Strength: Yield (Proof), MPa 900
75 to 340

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 300
200
Melting Completion (Liquidus), °C 1700
1080
Melting Onset (Solidus), °C 1650
1030
Specific Heat Capacity, J/kg-K 520
390
Thermal Expansion, µm/m-K 9.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 75
31
Density, g/cm3 5.1
8.9
Embodied Carbon, kg CO2/kg material 34
2.6
Embodied Energy, MJ/kg 540
41
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
29 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 3460
24 to 500
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 32
18
Strength to Weight: Axial, points 56
6.8 to 11
Strength to Weight: Bending, points 44
9.1 to 13
Thermal Shock Resistance, points 66
7.9 to 13

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Arsenic (As), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.4 to 99.835
Hydrogen (H), % 0 to 0.0090
0
Iron (Fe), % 0 to 0.25
0
Molybdenum (Mo), % 6.5 to 7.5
0
Niobium (Nb), % 6.5 to 7.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0.015 to 0.040
Tantalum (Ta), % 0 to 0.5
0
Titanium (Ti), % 84.9 to 88
0