MakeItFrom.com
Menu (ESC)

Type 1 Niobium vs. 5252 Aluminum

Type 1 niobium belongs to the otherwise unclassified metals classification, while 5252 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Type 1 niobium and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 79
68 to 75
Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 29
4.5 to 11
Poisson's Ratio 0.4
0.33
Shear Modulus, GPa 38
25
Tensile Strength: Ultimate (UTS), MPa 140
230 to 290
Tensile Strength: Yield (Proof), MPa 82
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Specific Heat Capacity, J/kg-K 270
910
Thermal Conductivity, W/m-K 52
140
Thermal Expansion, µm/m-K 7.3
24

Otherwise Unclassified Properties

Density, g/cm3 8.6
2.7
Embodied Water, L/kg 160
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 32
210 to 430
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 4.6
23 to 30
Strength to Weight: Bending, points 7.1
31 to 36
Thermal Diffusivity, mm2/s 23
57
Thermal Shock Resistance, points 13
10 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 97.8
Carbon (C), % 0 to 0.010
0
Copper (Cu), % 0
0 to 0.1
Hafnium (Hf), % 0 to 0.020
0
Hydrogen (H), % 0 to 0.0015
0
Iron (Fe), % 0 to 0.0050
0 to 0.1
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0
0 to 0.1
Molybdenum (Mo), % 0 to 0.010
0
Nickel (Ni), % 0 to 0.0050
0
Niobium (Nb), % 99.7 to 100
0
Nitrogen (N), % 0 to 0.010
0
Oxygen (O), % 0 to 0.015
0
Silicon (Si), % 0 to 0.0050
0 to 0.080
Tantalum (Ta), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.020
0
Tungsten (W), % 0 to 0.030
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Zirconium (Zr), % 0 to 0.020
0
Residuals, % 0
0 to 0.1