MakeItFrom.com
Menu (ESC)

Type 3 Niobium vs. 5052 Aluminum

Type 3 niobium belongs to the otherwise unclassified metals classification, while 5052 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Type 3 niobium and the bottom bar is 5052 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
46 to 83
Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 23
1.1 to 22
Poisson's Ratio 0.4
0.33
Shear Modulus, GPa 38
26
Tensile Strength: Ultimate (UTS), MPa 220
190 to 320
Tensile Strength: Yield (Proof), MPa 140
75 to 280

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Specific Heat Capacity, J/kg-K 270
900
Thermal Conductivity, W/m-K 42
140
Thermal Expansion, µm/m-K 7.3
24

Otherwise Unclassified Properties

Density, g/cm3 8.6
2.7
Embodied Water, L/kg 160
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
1.7 to 69
Resilience: Unit (Modulus of Resilience), kJ/m3 93
41 to 590
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 7.2
19 to 33
Strength to Weight: Bending, points 9.5
27 to 38
Thermal Diffusivity, mm2/s 18
57
Thermal Shock Resistance, points 21
8.3 to 14

Alloy Composition

Aluminum (Al), % 0
95.8 to 97.7
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 0
0 to 0.1
Hafnium (Hf), % 0 to 0.020
0
Hydrogen (H), % 0 to 0.0015
0
Iron (Fe), % 0 to 0.0050
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0
0 to 0.1
Molybdenum (Mo), % 0 to 0.010
0
Nickel (Ni), % 0 to 0.0050
0
Niobium (Nb), % 98.6 to 99.2
0
Nitrogen (N), % 0 to 0.010
0
Oxygen (O), % 0 to 0.015
0
Silicon (Si), % 0 to 0.0050
0 to 0.25
Tantalum (Ta), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.020
0
Tungsten (W), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0.8 to 1.2
0
Residuals, % 0
0 to 0.15