MakeItFrom.com
Menu (ESC)

Type 3 Niobium vs. C85800 Brass

Type 3 niobium belongs to the otherwise unclassified metals classification, while C85800 brass belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is Type 3 niobium and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 23
15
Poisson's Ratio 0.4
0.31
Shear Modulus, GPa 38
40
Tensile Strength: Ultimate (UTS), MPa 220
380
Tensile Strength: Yield (Proof), MPa 140
210

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Specific Heat Capacity, J/kg-K 270
380
Thermal Conductivity, W/m-K 42
84
Thermal Expansion, µm/m-K 7.3
20

Otherwise Unclassified Properties

Density, g/cm3 8.6
8.0
Embodied Water, L/kg 160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
48
Resilience: Unit (Modulus of Resilience), kJ/m3 93
210
Stiffness to Weight: Axial, points 6.8
7.2
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 7.2
13
Strength to Weight: Bending, points 9.5
15
Thermal Diffusivity, mm2/s 18
27
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.010
0
Copper (Cu), % 0
57 to 69
Hafnium (Hf), % 0 to 0.020
0
Hydrogen (H), % 0 to 0.0015
0
Iron (Fe), % 0 to 0.0050
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0
0 to 0.25
Molybdenum (Mo), % 0 to 0.010
0
Nickel (Ni), % 0 to 0.0050
0 to 0.5
Niobium (Nb), % 98.6 to 99.2
0
Nitrogen (N), % 0 to 0.010
0
Oxygen (O), % 0 to 0.015
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.0050
0 to 0.25
Sulfur (S), % 0
0 to 0.050
Tantalum (Ta), % 0 to 0.1
0
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0 to 0.020
0
Tungsten (W), % 0 to 0.030
0
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0.8 to 1.2
0
Residuals, % 0
0 to 1.3