MakeItFrom.com
Menu (ESC)

Type 3 Magnetic Alloy vs. 1080 Aluminum

Type 3 magnetic alloy belongs to the nickel alloys classification, while 1080 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Type 3 magnetic alloy and the bottom bar is 1080 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
68
Elongation at Break, % 43
4.6 to 40
Fatigue Strength, MPa 170
21 to 48
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 70
26
Shear Strength, MPa 380
49 to 78
Tensile Strength: Ultimate (UTS), MPa 550
72 to 130
Tensile Strength: Yield (Proof), MPa 210
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1370
640
Melting Onset (Solidus), °C 1320
640
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
61
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
200

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 8.7
8.3
Embodied Energy, MJ/kg 120
160
Embodied Water, L/kg 220
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
4.7 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 120
2.1 to 100
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 22
50
Strength to Weight: Axial, points 18
7.4 to 14
Strength to Weight: Bending, points 17
14 to 22
Thermal Shock Resistance, points 18
3.2 to 6.0

Alloy Composition

Aluminum (Al), % 0
99.8 to 100
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.0 to 3.0
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 4.0 to 6.0
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 9.9 to 19
0 to 0.15
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0 to 0.020
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 75 to 78
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.030
Residuals, % 0
0 to 0.020