MakeItFrom.com
Menu (ESC)

Type 3 Magnetic Alloy vs. 5652 Aluminum

Type 3 magnetic alloy belongs to the nickel alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Type 3 magnetic alloy and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
68
Elongation at Break, % 43
6.8 to 25
Fatigue Strength, MPa 170
60 to 140
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 70
26
Shear Strength, MPa 380
110 to 170
Tensile Strength: Ultimate (UTS), MPa 550
190 to 290
Tensile Strength: Yield (Proof), MPa 210
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 910
190
Melting Completion (Liquidus), °C 1370
650
Melting Onset (Solidus), °C 1320
610
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
35
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 8.7
8.6
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 220
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 120
40 to 480
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 22
51
Strength to Weight: Axial, points 18
20 to 30
Strength to Weight: Bending, points 17
27 to 36
Thermal Shock Resistance, points 18
8.4 to 13

Alloy Composition

Aluminum (Al), % 0
95.8 to 97.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.0 to 3.0
0.15 to 0.35
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 4.0 to 6.0
0 to 0.040
Iron (Fe), % 9.9 to 19
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 1.5
0 to 0.010
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 75 to 78
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15