MakeItFrom.com
Menu (ESC)

Type 3 Magnetic Alloy vs. 6012 Aluminum

Type 3 magnetic alloy belongs to the nickel alloys classification, while 6012 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Type 3 magnetic alloy and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
69
Elongation at Break, % 43
9.1 to 11
Fatigue Strength, MPa 170
55 to 100
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 70
26
Shear Strength, MPa 380
130 to 190
Tensile Strength: Ultimate (UTS), MPa 550
220 to 320
Tensile Strength: Yield (Proof), MPa 210
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1370
640
Melting Onset (Solidus), °C 1320
570
Specific Heat Capacity, J/kg-K 450
890
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
45
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.7
2.9
Embodied Carbon, kg CO2/kg material 8.7
8.2
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 220
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 120
94 to 480
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 22
48
Strength to Weight: Axial, points 18
22 to 32
Strength to Weight: Bending, points 17
29 to 37
Thermal Shock Resistance, points 18
10 to 14

Alloy Composition

Aluminum (Al), % 0
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.0 to 3.0
0 to 0.3
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 4.0 to 6.0
0 to 0.1
Iron (Fe), % 9.9 to 19
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 1.5
0.4 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 75 to 78
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0.6 to 1.4
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15