MakeItFrom.com
Menu (ESC)

Type 3 Magnetic Alloy vs. 6014 Aluminum

Type 3 magnetic alloy belongs to the nickel alloys classification, while 6014 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Type 3 magnetic alloy and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
69
Elongation at Break, % 43
9.1 to 17
Fatigue Strength, MPa 170
43 to 79
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 70
26
Shear Strength, MPa 380
96 to 150
Tensile Strength: Ultimate (UTS), MPa 550
160 to 260
Tensile Strength: Yield (Proof), MPa 210
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 910
180
Melting Completion (Liquidus), °C 1370
640
Melting Onset (Solidus), °C 1320
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
53
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
180

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 8.7
8.6
Embodied Energy, MJ/kg 120
160
Embodied Water, L/kg 220
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
22
Resilience: Unit (Modulus of Resilience), kJ/m3 120
46 to 300
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 22
50
Strength to Weight: Axial, points 18
16 to 26
Strength to Weight: Bending, points 17
24 to 33
Thermal Shock Resistance, points 18
7.0 to 11

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.2
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.0 to 3.0
0 to 0.2
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 4.0 to 6.0
0 to 0.25
Iron (Fe), % 9.9 to 19
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.5
0.050 to 0.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 75 to 78
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0.3 to 0.6
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15