MakeItFrom.com
Menu (ESC)

Type 3 Magnetic Alloy vs. A356.0 Aluminum

Type 3 magnetic alloy belongs to the nickel alloys classification, while A356.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Type 3 magnetic alloy and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
70
Elongation at Break, % 43
3.0 to 6.0
Fatigue Strength, MPa 170
50 to 90
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 70
26
Tensile Strength: Ultimate (UTS), MPa 550
160 to 270
Tensile Strength: Yield (Proof), MPa 210
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 290
500
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1370
610
Melting Onset (Solidus), °C 1320
570
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
40
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.7
2.6
Embodied Carbon, kg CO2/kg material 8.7
8.0
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 220
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 120
49 to 300
Stiffness to Weight: Axial, points 12
15
Stiffness to Weight: Bending, points 22
53
Strength to Weight: Axial, points 18
17 to 29
Strength to Weight: Bending, points 17
25 to 36
Thermal Shock Resistance, points 18
7.6 to 13

Alloy Composition

Aluminum (Al), % 0
91.1 to 93.3
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.0 to 3.0
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 4.0 to 6.0
0 to 0.2
Iron (Fe), % 9.9 to 19
0 to 0.2
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 75 to 78
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15