MakeItFrom.com
Menu (ESC)

Type 3 Magnetic Alloy vs. C46500 Brass

Type 3 magnetic alloy belongs to the nickel alloys classification, while C46500 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is Type 3 magnetic alloy and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
100
Elongation at Break, % 43
18 to 50
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 70
40
Shear Strength, MPa 380
280 to 380
Tensile Strength: Ultimate (UTS), MPa 550
380 to 610
Tensile Strength: Yield (Proof), MPa 210
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 910
120
Melting Completion (Liquidus), °C 1370
900
Melting Onset (Solidus), °C 1320
890
Specific Heat Capacity, J/kg-K 450
380
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
29

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 8.7
2.7
Embodied Energy, MJ/kg 120
47
Embodied Water, L/kg 220
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
170 to 1170
Stiffness to Weight: Axial, points 12
7.2
Stiffness to Weight: Bending, points 22
20
Strength to Weight: Axial, points 18
13 to 21
Strength to Weight: Bending, points 17
15 to 20
Thermal Shock Resistance, points 18
13 to 20

Alloy Composition

Arsenic (As), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.0 to 3.0
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 4.0 to 6.0
59 to 62
Iron (Fe), % 9.9 to 19
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 75 to 78
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
36.2 to 40.5
Residuals, % 0
0 to 0.4