MakeItFrom.com
Menu (ESC)

Type 3 Magnetic Alloy vs. C87400 Brass

Type 3 magnetic alloy belongs to the nickel alloys classification, while C87400 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is Type 3 magnetic alloy and the bottom bar is C87400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
110
Elongation at Break, % 43
21
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 70
41
Tensile Strength: Ultimate (UTS), MPa 550
390
Tensile Strength: Yield (Proof), MPa 210
160

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1370
920
Melting Onset (Solidus), °C 1320
820
Specific Heat Capacity, J/kg-K 450
400
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 55
27
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 8.7
2.7
Embodied Energy, MJ/kg 120
44
Embodied Water, L/kg 220
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
65
Resilience: Unit (Modulus of Resilience), kJ/m3 120
120
Stiffness to Weight: Axial, points 12
7.4
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 18
13
Strength to Weight: Bending, points 17
14
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.0 to 3.0
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 4.0 to 6.0
79 to 85.5
Iron (Fe), % 9.9 to 19
0
Lead (Pb), % 0
0 to 1.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 75 to 78
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
2.5 to 4.0
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.8