Type 3 Magnetic Alloy vs. C90500 Gun Metal
Type 3 magnetic alloy belongs to the nickel alloys classification, while C90500 gun metal belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is Type 3 magnetic alloy and the bottom bar is C90500 gun metal.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 180 | |
110 |
Elongation at Break, % | 43 | |
20 |
Fatigue Strength, MPa | 170 | |
90 |
Poisson's Ratio | 0.31 | |
0.34 |
Shear Modulus, GPa | 70 | |
40 |
Tensile Strength: Ultimate (UTS), MPa | 550 | |
320 |
Tensile Strength: Yield (Proof), MPa | 210 | |
160 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
190 |
Maximum Temperature: Mechanical, °C | 910 | |
170 |
Melting Completion (Liquidus), °C | 1370 | |
1000 |
Melting Onset (Solidus), °C | 1320 | |
850 |
Specific Heat Capacity, J/kg-K | 450 | |
370 |
Thermal Expansion, µm/m-K | 12 | |
18 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.9 | |
11 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.0 | |
11 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 55 | |
35 |
Density, g/cm3 | 8.7 | |
8.7 |
Embodied Carbon, kg CO2/kg material | 8.7 | |
3.6 |
Embodied Energy, MJ/kg | 120 | |
59 |
Embodied Water, L/kg | 220 | |
390 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 190 | |
54 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 120 | |
110 |
Stiffness to Weight: Axial, points | 12 | |
6.9 |
Stiffness to Weight: Bending, points | 22 | |
18 |
Strength to Weight: Axial, points | 18 | |
10 |
Strength to Weight: Bending, points | 17 | |
12 |
Thermal Shock Resistance, points | 18 | |
12 |
Alloy Composition
Aluminum (Al), % | 0 | |
0 to 0.0050 |
Antimony (Sb), % | 0 | |
0 to 0.2 |
Carbon (C), % | 0 to 0.050 | |
0 |
Chromium (Cr), % | 2.0 to 3.0 | |
0 |
Cobalt (Co), % | 0 to 0.5 | |
0 |
Copper (Cu), % | 4.0 to 6.0 | |
86 to 89 |
Iron (Fe), % | 9.9 to 19 | |
0 to 0.2 |
Lead (Pb), % | 0 | |
0 to 0.3 |
Manganese (Mn), % | 0 to 1.5 | |
0 |
Molybdenum (Mo), % | 0 to 0.5 | |
0 |
Nickel (Ni), % | 75 to 78 | |
0 to 1.0 |
Phosphorus (P), % | 0 to 0.010 | |
0 to 1.5 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.0050 |
Sulfur (S), % | 0 to 0.020 | |
0 to 0.050 |
Tin (Sn), % | 0 | |
9.0 to 11 |
Zinc (Zn), % | 0 | |
1.0 to 3.0 |
Residuals, % | 0 | |
0 to 0.3 |