MakeItFrom.com
Menu (ESC)

Type 4 Magnetic Alloy vs. Grade 17 Titanium

Type 4 magnetic alloy belongs to the nickel alloys classification, while grade 17 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is Type 4 magnetic alloy and the bottom bar is grade 17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 2.0 to 40
27
Fatigue Strength, MPa 220 to 400
160
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 73
38
Shear Strength, MPa 420 to 630
180
Tensile Strength: Ultimate (UTS), MPa 620 to 1100
270
Tensile Strength: Yield (Proof), MPa 270 to 1040
210

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 900
320
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1370
1610
Specific Heat Capacity, J/kg-K 440
540
Thermal Expansion, µm/m-K 11
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
7.3

Otherwise Unclassified Properties

Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 10
36
Embodied Energy, MJ/kg 140
600
Embodied Water, L/kg 210
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 200
68
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 2840
220
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 22
35
Strength to Weight: Axial, points 19 to 35
17
Strength to Weight: Bending, points 18 to 27
21
Thermal Shock Resistance, points 21 to 37
21

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 0 to 0.3
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 9.5 to 17.5
0 to 0.2
Manganese (Mn), % 0 to 0.8
0
Molybdenum (Mo), % 3.5 to 6.0
0
Nickel (Ni), % 79 to 82
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
99.015 to 99.96
Residuals, % 0
0 to 0.4