MakeItFrom.com
Menu (ESC)

Type 4 Magnetic Alloy vs. C67000 Bronze

Type 4 magnetic alloy belongs to the nickel alloys classification, while C67000 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is Type 4 magnetic alloy and the bottom bar is C67000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 2.0 to 40
5.6 to 11
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 73
42
Shear Strength, MPa 420 to 630
390 to 510
Tensile Strength: Ultimate (UTS), MPa 620 to 1100
660 to 880
Tensile Strength: Yield (Proof), MPa 270 to 1040
350 to 540

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 900
160
Melting Completion (Liquidus), °C 1420
900
Melting Onset (Solidus), °C 1370
850
Specific Heat Capacity, J/kg-K 440
410
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
22
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
25

Otherwise Unclassified Properties

Base Metal Price, % relative 60
23
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 10
2.9
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 210
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 200
43 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 2840
560 to 1290
Stiffness to Weight: Axial, points 12
7.8
Stiffness to Weight: Bending, points 22
20
Strength to Weight: Axial, points 19 to 35
23 to 31
Strength to Weight: Bending, points 18 to 27
21 to 26
Thermal Shock Resistance, points 21 to 37
21 to 29

Alloy Composition

Aluminum (Al), % 0
3.0 to 6.0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.3
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.3
63 to 68
Iron (Fe), % 9.5 to 17.5
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.8
2.5 to 5.0
Molybdenum (Mo), % 3.5 to 6.0
0
Nickel (Ni), % 79 to 82
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
21.8 to 32.5
Residuals, % 0
0 to 0.5