MakeItFrom.com
Menu (ESC)

C10100 Copper vs. 5042 Aluminum

C10100 copper belongs to the copper alloys classification, while 5042 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C10100 copper and the bottom bar is 5042 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 1.5 to 50
1.1 to 3.4
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Shear Strength, MPa 150 to 240
200
Tensile Strength: Ultimate (UTS), MPa 220 to 410
340 to 360
Tensile Strength: Yield (Proof), MPa 69 to 400
270 to 310

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
640
Melting Onset (Solidus), °C 1080
570
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 390
130
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
33
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 9.0
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.8
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 85
3.6 to 12
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 690
550 to 720
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 6.8 to 13
35 to 37
Strength to Weight: Bending, points 9.0 to 14
40 to 42
Thermal Diffusivity, mm2/s 110
53
Thermal Shock Resistance, points 7.8 to 15
15 to 16

Alloy Composition

Aluminum (Al), % 0
94.2 to 96.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 99.99 to 100
0 to 0.15
Iron (Fe), % 0
0 to 0.35
Lead (Pb), % 0 to 0.0010
0
Magnesium (Mg), % 0
3.0 to 4.0
Manganese (Mn), % 0
0.2 to 0.5
Oxygen (O), % 0 to 0.00050
0
Phosphorus (P), % 0 to 0.00030
0
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.00010
0 to 0.25
Residuals, % 0
0 to 0.15