MakeItFrom.com
Menu (ESC)

C10200 Copper vs. Grade 4 Titanium

C10200 copper belongs to the copper alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C10200 copper and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.6 to 50
17
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
41
Shear Strength, MPa 160 to 240
390
Tensile Strength: Ultimate (UTS), MPa 230 to 410
640
Tensile Strength: Yield (Proof), MPa 77 to 400
530

Thermal Properties

Latent Heat of Fusion, J/g 210
420
Maximum Temperature: Mechanical, °C 200
320
Melting Completion (Liquidus), °C 1080
1660
Melting Onset (Solidus), °C 1080
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 390
19
Thermal Expansion, µm/m-K 17
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
37
Density, g/cm3 9.0
4.5
Embodied Carbon, kg CO2/kg material 2.6
31
Embodied Energy, MJ/kg 41
500
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 91
100
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
1330
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 7.2 to 13
40
Strength to Weight: Bending, points 9.4 to 14
37
Thermal Diffusivity, mm2/s 110
7.6
Thermal Shock Resistance, points 8.2 to 15
46

Alloy Composition

Carbon (C), % 0
0 to 0.080
Copper (Cu), % 99.95 to 100
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0 to 0.0010
0 to 0.4
Titanium (Ti), % 0
98.6 to 100
Residuals, % 0
0 to 0.4