MakeItFrom.com
Menu (ESC)

C10200 Copper vs. C36500 Muntz Metal

Both C10200 copper and C36500 Muntz Metal are copper alloys. They have 60% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C10200 copper and the bottom bar is C36500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 2.6 to 50
40
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 43
39
Shear Strength, MPa 160 to 240
270
Tensile Strength: Ultimate (UTS), MPa 230 to 410
400
Tensile Strength: Yield (Proof), MPa 77 to 400
160

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1080
900
Melting Onset (Solidus), °C 1080
890
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
28
Electrical Conductivity: Equal Weight (Specific), % IACS 100
32

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 9.0
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 91
130
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
120
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 7.2 to 13
14
Strength to Weight: Bending, points 9.4 to 14
15
Thermal Diffusivity, mm2/s 110
40
Thermal Shock Resistance, points 8.2 to 15
13

Alloy Composition

Copper (Cu), % 99.95 to 100
58 to 61
Iron (Fe), % 0
0 to 0.15
Lead (Pb), % 0
0.25 to 0.7
Oxygen (O), % 0 to 0.0010
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
37.5 to 41.8
Residuals, % 0
0 to 0.4