MakeItFrom.com
Menu (ESC)

C10300 Copper vs. C96600 Copper

Both C10300 copper and C96600 copper are copper alloys. They have 67% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C10300 copper and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
140
Elongation at Break, % 2.6 to 50
7.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
52
Tensile Strength: Ultimate (UTS), MPa 230 to 410
760
Tensile Strength: Yield (Proof), MPa 77 to 400
480

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
280
Melting Completion (Liquidus), °C 1080
1180
Melting Onset (Solidus), °C 1080
1100
Specific Heat Capacity, J/kg-K 390
400
Thermal Conductivity, W/m-K 390
30
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 99
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
65
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
7.0
Embodied Energy, MJ/kg 41
100
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 91
47
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
830
Stiffness to Weight: Axial, points 7.2
8.7
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 7.2 to 13
24
Strength to Weight: Bending, points 9.4 to 14
21
Thermal Diffusivity, mm2/s 110
8.4
Thermal Shock Resistance, points 8.2 to 15
25

Alloy Composition

Beryllium (Be), % 0
0.4 to 0.7
Copper (Cu), % 99.95 to 99.999
63.5 to 69.8
Iron (Fe), % 0
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
29 to 33
Phosphorus (P), % 0.0010 to 0.0050
0
Silicon (Si), % 0
0 to 0.15
Residuals, % 0
0 to 0.5