MakeItFrom.com
Menu (ESC)

C10400 Copper vs. S44537 Stainless Steel

C10400 copper belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C10400 copper and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 50
21
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
79
Shear Strength, MPa 160 to 240
320
Tensile Strength: Ultimate (UTS), MPa 230 to 410
510
Tensile Strength: Yield (Proof), MPa 77 to 400
360

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1080
1480
Melting Onset (Solidus), °C 1080
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
19
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
50
Embodied Water, L/kg 340
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.5 to 91
95
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
320
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
18
Strength to Weight: Bending, points 9.4 to 14
18
Thermal Diffusivity, mm2/s 110
5.6
Thermal Shock Resistance, points 8.2 to 15
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 99.9 to 99.973
0 to 0.5
Iron (Fe), % 0
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0.1 to 0.6
Silver (Ag), % 0.027 to 0.050
0
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Residuals, % 0 to 0.050
0